Smart Decarbonization of the Built Environment in the Nexus of Climate Change, Population Growth and Technology Adoption

Zoltan Nagy
Assistant Professor
Cockrell School of Engineering

Juliana Felkner
Assistant Professor
School of Architecture
Team

• Zoltan Nagy, Cockrell School of Engineering
• Juliana Felkner, School of Architecture
• Ariane Beck, LBJ School of Public Affairs
• Cale Reeves, LBJ School of Public Affairs
30% of US greenhouse gas emissions stem from buildings mostly for heating and cooling.
“Cities are at the center of climate action”

IEA, Empowering Cities for a Net Zero Future, 2021

Paper
https://arxiv.org/abs/2202.07458

Dashboard
https://tinyurl.com/yeyk9229
“Cities are at the center of climate action”

IEA, Empowering Cities for a Net Zero Future, 2021

Yet very few tools exist to project expected emissions for combinations of decarbonization scenarios

→ IMPACT Pathways

IMPACT: INTEGRATED MULTI-DOMAIN EMISSION PATHWAYS FOR CITIES UNDER LAND-USE POLICY, TECHNOLOGY ADOPTION, CLIMATE CHANGE AND GRID DECARBONIZATION
Decarbonization of the built environment

✓ Electrification of end use (heating/cooling)
✓ High-efficiency HVAC (& lighting)
✓ Local PV generation
✓ Grid decarbonization

(Leibowicz et al, 2018)
Decarbonization of the built environment

- Electrification of end use (heating/cooling)
- High-efficiency HVAC (& lighting)
- Local PV generation
- Grid decarbonization

(Leibowicz et al, 2018)

How to incentivize?

How fast?

Paper
https://arxiv.org/abs/2202.07458

Dashboard
https://tinyurl.com/yeyk9229
Decarbonization of the built environment

✓ Electrification of end use (heating/cooling)
✓ High-efficiency HVAC (& lighting)
✓ Local PV generation
✓ Grid decarbonization

(Leibowicz et al, 2018)

How to incentivize?

How fast?

How does climate change impact demand?

Goal:
‣ create model to capture interactions
‣ investigate trade-offs & synergies
‣ ex: tech adoption vs urban development

How does city growth impact demand?
Model implementation in Austin, TX

- 3 neighborhoods (Brentwood, South Manchaca and Montopolis)
- Emission pathways until 2100 in decades

Paper
https://arxiv.org/abs/2202.07458

Dashboard
https://tinyurl.com/yeyk9229
Model implementation in Austin, TX

- 3 neighborhoods (Brentwood, South Manchaca, and Montopolis)
- Emission pathways until 2100 in decades
- Low and high density scenarios created using Envision Tomorrow
- Improvement-to-land value ratio (ILR) drives redevelopment of parcels

Model implementation in Austin, TX

- 3 neighborhoods (Brentwood, South Manchaca, and Montopolis)
- Emission pathways until 2100 in decades
- Low and high density scenarios created using Envision Tomorrow
- Improvement-to-land value ratio (ILR) drives redevelopment of parcels
Model implementation in Austin, TX

Agent based model in each residence decides whether or not to adopt:
- high efficiency HVAC
- PV & storage
- smart thermostat

Based on two incentive/mandate scenarios and socio economics

Model developed and validated with survey in Austin, TX

Paper
https://arxiv.org/abs/2202.07458

Dashboard
https://tinyurl.com/yeyk9229
Model implementation in Austin, TX

- Each building is modeled and simulated to determine annual energy demand under climate change
- Energy demand is reduced accordingly for buildings that adopted technologies
- Parcels are redeveloped according to scenarios

Paper
https://arxiv.org/abs/2202.07458

Dashboard
https://tinyurl.com/yeyk9229
Model implementation in Austin, TX

Emissions estimated assuming:
- energy demand is met fully electrically (strong assumption)
- based on grid decarbonization scenarios
Summary

• 2 urban development scenarios
• 2 incentive/mandates scenarios
• 3 climate change scenarios
• 3 grid decarbonization scenarios
• 3 neighborhoods

loads of data to explore
IMPACT Pathways

for A1B climate scenario
(+1.5C by 2050, +2.5C by 2100)

Annual emissions, per unit for all three neighborhoods (t CO₂ eq/unit)

Paper
https://arxiv.org/abs/2202.07458

Dashboard
https://tinyurl.com/yeyk9229
A. Rapid grid decarbonization results in the fastest emission reductions.

B. Emission reductions are amplified by densification.
A. Rapid grid decarbonization results in the fastest emission reductions.

B. Emission reductions are amplified by densification.

C. For moderate grid decarbonization, low-density development shows rebound of emissions after 2060, while

D. The high-density development does not show rebound.
Climate Change & Premium for Sprawl

Climate Change amplifies difference between low and high density developments

→ Premium for Sprawl

Paper
https://arxiv.org/abs/2202.07458

Dashboard
https://tinyurl.com/yeyk9229
Climate Change & Premium for Sprawl

Premium for Sprawl = Emissions (High Density) - Emissions (Low density) (assuming the same number of residences)

https://arxiv.org/abs/2202.07458
https://tinyurl.com/yeyk9229
Preprint & Online Dashboard

IMPACT: INTEGRATED MULTI-DOMAIN EMISSION PATHWAYS FOR CITIES UNDER LAND-USE POLICY, TECHNOLOGY ADOPTION, CLIMATE CHANGE AND GRID DECARBONIZATION

ZOLTAN NAGY\(^1\), JULIANA FELKNER\(^2\), ARIANE L. BECK\(^1\), D. CALE REEVE\(^3\), STEVEN RICHTER\(^2\), VIVEK SHAHRY\(^3\), ELI RAMTHUN\(^3\), EDWARD MBATA\(^1\), STEPHEN ZIGMUND\(^2\), BENJAMIN MARSHALL\(^1\), LINNEA MARKS\(^4\), VIANEY RUEDA\(^1\), JASMINE TRIPLETT\(^3\), SARAH DOMEDADE\(^1\), JOSE VAZQUEZ-CANTELI\(^1\), AND VARUN RAI\(^3\)

\(^1\) DEPARTMENT OF CIVIL, ARCHITECTURAL AND ENVIRONMENTAL ENGINEERING, COCKRELL SCHOOL OF ENGINEERING, THE UNIVERSITY OF TEXAS AT AUSTIN, TX, USA
\(^2\) SCHOOL OF ARCHITECTURE, THE UNIVERSITY OF TEXAS AT AUSTIN, TX, USA
\(^3\) LBJ SCHOOL OF PUBLIC AFFAIRS, THE UNIVERSITY OF TEXAS AT AUSTIN, TX, USA
\(^4\) SCHOOL OF INFORMATION, THE UNIVERSITY OF TEXAS AT AUSTIN, TX, USA
\(^5\) SCHOOL OF PUBLIC POLICY, GEORGIA INSTITUTE OF TECHNOLOGY, GA, USA
\(^6\) DNV, NORWAY
\(^7\) EPIC SYSTEMS CORPORATION, VERONA, WI, USA

Paper
https://arxiv.org/abs/2202.07458

Dashboard
https://tinyurl.com/yeyk9229
Conclusion

- IMPACT Pathways demonstrate substantial impact of zoning policy and housing on emission reductions: *Premium for Sprawl*. Technology adoption is negligible.
- **Rebound**: Short term emission reductions can be overturned in the longer term
- Demand variation due to climate change must be considered in emission scenarios
- IMPACT Pathways can be further integrated with other domains, e.g., transportation emissions, embodied carbon, EV adoption, or demand response.