UT Energy Week 2018
Panel 2: Innovation in Oil & Gas: Impacts of Digitalization on Operations

Technology & Big Data in Unconventional Oil & Gas Development

James Courtier
Vice President Exploration
January 31, 2018
This presentation (which includes oral statements made in connection with this presentation) may contain forward-looking statements with respect to Laredo Petroleum, Inc. (the “Company”, “Laredo” or “LPI”) within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934.

All statements included in this presentation that address activities, events or developments that Laredo Petroleum, Inc. assumes, plans, expects, believes or anticipates will or may occur in the future are forward-looking statements.

Without limiting the generality of the foregoing, forward-looking statements contained in this presentation are based on certain assumptions made by the Company and are subject to a number of assumptions, risks and uncertainties, that could cause actual results to differ materially from those projected as described in the Company’s Annual Report on Form 10-K for the year ended December 31, 2016 and other reports filed with the Securities Exchange Commission (“SEC”).

Any forward-looking statement speaks only as of the date on which such statement is made and the Company undertakes no obligation to correct or update any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by applicable law.
Technology & Big Data Outline

- Massive quantities of data being generated
- Physics-based technical assessments remain essential
- Why “Big Data Analytics” is rapidly gaining momentum
- Macro industry insights
- Future for new industry entrants
What and where is the data?

Initial Subsurface Data Sets
- Cores
- Logs
- Seismic

Subsurface Characterization & Modeling
- High resolution 3D models
- Reservoir, mechanical and fracturing properties
- Hydraulic fractures, reservoir simulation & studies

Operations
- Drilling & Completions
- Real-time instrumentation data
- Pressure pumping data

Production
- Metered production data
- Downhole pressure data

Massive quantities of data being generated across entire value-chain
Steady, Strategic Plan Yields Repeatable Results

A disciplined focus on key value drivers since inception has driven shareholder returns
Today’s talk focuses on how data & analytics assist an unconventional oil company during development.
Reprocessed 3D seismic dataset exhibits substantial imaging improvements
MegaMerge Processing Improvements

Improvements in image clarity, continuity & depth accuracy

Improving existing data sets adds tremendous value at low cost
High-Resolution 3D Geomodel Reservoir Characterization

High quality inputs improve 3D reservoir characterization

Improved Petrophysical Model

Improved Inversion Products

Improved High-Resolution Facies & Rock Property Volumes

High quality inputs improve 3D reservoir characterization
Integrating data within geomodels greatly improves development planning toolkit.

Consistent geological framework
high-resolution
multiple data type inputs
quantitative
multi-attribute outputs

High-Resolution 3D Geomodel Overview
Proprietary workflows are shortening time from concept to field implementation, enabling continual optimization of completions designs.
Why “Big Data Analytics”?

Bivariate Example: Impact of 1 parameter

Multivariate Example: Impact of 9 parameters

Patterns may not emerge in bivariate studies - necessitating a multivariate approach
Fundamental Insights from Multivariate Analytics

Algorithms detect individual parameters that impact value drivers (e.g. oil production) and their significance.
Key engineering & geoscience production drivers are detected amongst multiple input parameters.

Multivariate Analytics: 3D BO/ft Predictions

- 45 Input Variables Examined
 - Engineering Variables (7)
 - Acoustic Properties (6)
 - Petrophysical Parameters (13)
 - Lithology Indicators (9)
 - Oil Storage Attributes (6)
 - Structural Attributes (3)
 - Pore Pressure

- Multivariate 3D Bo/ft. Solution
 - Completed Lateral Length
 - Parent-Child Tangent Distance
 - Completion Parameter #1
 - Completion Parameter #2
 - Production Parameter
 - Geological Parameter #1
 - Geological Parameter #2
 - Geological Parameter #3
 - Geological Parameter #4
 - Geological Parameter #5

6-Month Oil Production MODEL PREDICTION

\[R^2 = 0.8012 \]
Sugg-Graham Nine-Well Package Performing vs. Type Curve

Wells drilled with tighter spacing are exceeding type curve expectations

~36% Outperformance of all 96 wells to 1.3 MMBOE type curve

Note: Production has been scaled to 10,000' EUR type curves and non-producing days (for shut-ins) have been removed. Average cumulative production data through 10/25/2017. This includes 96 Hz UWC/MWC & Cline wells that have utilized optimized completions with avg. ~1,900 pounds of sand per lateral foot. Type curve utilizes a weighted-average of 89 Hz UWC/MWC 1.3 MMBOE wells & 7 Hz Cline 1.0 MMBOE wells.
Summary of “Big Data” Utilized in Machine Learning Project

LPI Proprietary Data
- 320+ LPI Hz Wells
- 120 Subsurface attributes
- Multi-year drill schedule
- Detailed well economics
- Direction surveys
- Detailed completions
- Daily production
- Well-spacing distances

Subscription Data
- 15,000 OBO Permian Hz Wells
- Public well economics
- Directional surveys
- Daily production
- Public completions details
- Public well spacing details

Organized Database

Over 15 million unique attributes accessed via machine-learning to quantify dominant economic drivers
Machine Learning Example: Solving For Production

Constituent Model Parameters

Predictive Accuracy

Geology

Completions

Spacing

Optimizing multi-well development for NPV via machine-learning analytics reduces risk & enhances total asset value
Multivariate, multidisciplinary, multidimensional

Integrating traditional workflows with rapid analytics accelerates technical insights & understanding
Technology & Big Data Summary

- Physics-based technical assessments remain essential
- High-resolution geomodels heavily influence workflows
- “Big Data Analytics” taking off
- Macro industry insights
- Future for new industry entrants
Thank You