Thriving in the Energy Transition – Pathways to a Low Carbon Future

Ajay Mehta
GM Long Range Reserch & New Energy Technologies

UT Energy Week, Austin, TX, January 29, 2018
Definitions & cautionary note

Reserves: Our use of the term “reserves” in this presentation means SEC proved oil and gas reserves.

Resources: Our use of the term “resources” in this presentation includes quantities of oil and gas not yet classified as SEC proved oil and gas reserves. Resources are consistent with the Society of Petroleum Engineers 2P and 2C definitions.

Organic: Our use of the term Organic includes SEC proved oil and gas reserves excluding changes resulting from acquisitions, divestments and year-average pricing impact.

Shales: Our use of the term ‘shales’ refers to tight, shale and coal bed methane oil and gas acreage.

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this document “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this document refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Companies over which Shell has joint control are generally referred to as “joint ventures” and companies over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “intend”, “may”, “plan”, “objectives”, “outlook”, “probably”, “project”, “will”, “seek”, “target”, “risks”, “goals”, “should” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including potential litigation and regulatory measures as a result of climate changes; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended 31 December, 2015 (available at www.shell.com/investor and www.sec.gov). These factors also should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation January 29, 2018. Neither Royal Dutch Shell nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation. There can be no assurance that dividend payments will match or exceed those set out in this presentation in the future, or that they will be made at all.

We use certain terms in this presentation, such as discovery potential, that the United States Securities and Exchange Commission (SEC) guidelines strictly prohibit us from including in filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain this form from the SEC by calling 1-800-SEC-0330.
Shell’s Purpose

We power progress together by providing more and cleaner energy solutions

LET’S MAKE THE FUTURE
Thrive in the energy transition

Societal challenge

<table>
<thead>
<tr>
<th>2015</th>
<th>2070</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing population</td>
<td>>10 billion</td>
</tr>
<tr>
<td>7 billion</td>
<td></td>
</tr>
</tbody>
</table>

Increasing energy demand

<table>
<thead>
<tr>
<th>2015</th>
<th>2070</th>
</tr>
</thead>
<tbody>
<tr>
<td>570 Exajoules</td>
<td>1000 Exajoules</td>
</tr>
</tbody>
</table>

Need to reduce CO₂ emissions

<table>
<thead>
<tr>
<th>2015</th>
<th>2070</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 gt CO₂e</td>
<td>43 gt CO₂e</td>
</tr>
</tbody>
</table>

Net Zero Emissions

CO2 Emission Pathways

- History
- Unconstrained (MIT)
- Oceans (Shell)
- Mountains (Shell)
- Target 2°C (MIT)
- Paris National 1.5°C Pathway
- Paris Range 1.5°C - 2°C

CO2 Emission Pathways
Thrive in the energy transition

Ambition - Net Carbon Footprint

Ambition to reduce Net Carbon Footprint\(^1\) of our energy products by around 20% by 2035

- Covers full range of emissions from energy products
- Aim to reduce overall intensity including production, supply chain, and customers
- Government policy, technology, and consumer choice will drive actual energy transition pace and outcomes
- Drive strategy over time in step with society
- 5-year reviews to ensure in line with societal progress

<table>
<thead>
<tr>
<th>Year</th>
<th>Society trajectory(^2)</th>
<th>Shell trajectory(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2045</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Net Carbon Footprint measured on an aggregate “well to wheel” or “well to wire” basis, from production through to consumption, on grams of CO\(_2\) equivalent per megajoule of energy products consumed; chemicals & lubricants products are excluded. Carbon Footprint of the energy system is modelled using Shell methodology aggregating lifecycle emissions of energy products on a fossil-equivalence basis. The methodology will be further reviewed and validated in collaboration with external experts.

2. Potential society trajectory includes analysis from Shell scenarios estimate of Net Zero Emissions by 2070 and IEA Energy Technology Perspectives 2017; Potential illustrative Shell trajectory.

Royal Dutch Shell | November 28/29, 2017
Thrive in the energy transition

Ambition – Net Carbon Footprint

- Flexibility and mix of options to achieve ambition
- Allows for oil and gas production growth offset by evolving product mix
- Changing product mix gives greatest opportunity
- Top-quartile scope 1 + 2 emissions has limited overall impact

Potential tools to achieve our 2035 Net Carbon Footprint

<table>
<thead>
<tr>
<th>Tool</th>
<th>Baseline</th>
<th>Top quartile (Scope 1+2)</th>
<th>Natural gas shift</th>
<th>New energy</th>
<th>Biofuels</th>
<th>Electric mobility</th>
<th>CCS</th>
<th>Natural sinks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTW gCO₂e/MJ</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>2035 AMBITION</td>
</tr>
</tbody>
</table>

Existing examples:

- Flare reduction
- Increased LNG
- Wind power
- Raizen biofuels
- Shell Recharge + New Motion
- Quest CCS
- Nature based offsets

Shell is active in each of these areas

1. Net Carbon Footprint measured on an aggregate “well to wheel” or “well to wire” basis, from production through to consumption, on grams of CO₂ equivalent per megajoule of energy products consumed; chemicals + lubricants products are excluded. Carbon Footprint of the energy system is modelled using Shell methodology aggregating lifecycle emissions of energy products on a fossil-equivalence basis. The methodology will be further reviewed and validated in collaboration with external experts.
New Energies

Emerging Opportunities

New Fuels

- Build integrated value chains
- Exploit adjacencies to existing businesses
- Discipline and commerciality
- Not equipment manufacturing

Focus areas:
- Biofuels
- Hydrogen

Power

Focus areas:
- Trading, marketing and customer access
- Low-carbon generation and storage (solar, wind, gas)
Shell and Biofuels

Trading & Supply
One of the world’s largest blenders and distributors of biofuels

Raízen JV
Production of low-carbon ethanol from Brazilian sugar cane

Advanced Biofuels
Investing in technologies using alternatives feedstocks such as waste

Sustainability
Commitment to the supply and development of sustainable biofuels
Hydrogen as a transport fuel
Clean and convenient

- Improves local air quality.
- Only water vapour emissions while driving.
- Low-carbon transport in the longer term.
- Can help reduce CO₂ emissions if made from renewable or low carbon sources.
- High range – up to 700 km per refuel
- Minutes to refuel
Shell and hydrogen

Germany

- **H2 Mobility Germany**
 - (230 Shell-branded)

California, USA

- **Shell Retail Stations**
 - Two Shell refuelling Stations – Torrance and Newport Beach.

UK

- **First Shell hydrogen station in 2017 – London, UK.**

Toyota Partnership

- Seven retail stations to be owned/operated by Shell.
Portfolio resilience through a **Power value chain**

CUSTOMERS
Multiple parties are active on the demand side

- Secure demand in key markets
- Commercial, industrial, and residential

OPTIMISATION
Leverage portfolio flexibility and arbitrage opportunities

- Optimise intermittent demand and supply
- Trading opportunities

SUPPLY & GENERATION
Not all products are supplied by Shell; some are purchased from third parties

- Wind, solar, and selected gas and storage assets
- Selective capacity ownership to create portfolio flexibility

- Adjacencies to existing gas businesses
- Value chain integrator
- Demand-driven development
Wind
Experience and portfolio diversity

Wind is an increasingly prominent part of the evolving energy system

- More than 15 years’ experience.
- Onshore and offshore projects operational in the USA and in Europe (50:50 joint ventures).
- Working to develop a diverse portfolio in offshore wind.

Onshore US
Since 2001; 553 wind turbines
Capacity: 738 MW (Shell Share: 369 MW)

Offshore Europe
Since 2007; 36 wind turbines
Capacity: 108 MW (Shell Share: 54 MW)

Offshore Europe (in development with consortium)
The Netherlands, 680 MW
Solar
Providing tailored, integrated solutions for our customers

Investing in those opportunities where we:

See the potential for scale
Have line of sight to profitability
Can leverage Shell’s existing footprint and capabilities
The Pace of Energy Decarbonization will vary by Industry Sector

- **Built environment**: 9.3Gt
- **Industry**: 13Gt
- **Transport**: 8.5Gt
- **Power generation**: 13.6Gt

Colors indicate:
- **Green**: Less difficult to decarbonise
- **Yellow**: ... (Neutral)
- **Red**: More difficult to decarbonise
Aviation, Shipping & Long Distance Transport will still need Liquid Fuels
Policy coordination vs technology
A journey to net-zero emissions

Source: Shell FET analysis

Copyright of Shell International B.V.
Long Range Research (LRR) – Back to Basics and Fundamental R&D

New Energy
- Develop a radically better energy carrier using low cost solar energy combined with novel technologies for energy storage and conversion

Chemicals
- Find new pathways to convert methane to products

Enabling sciences
- Electrochemistry
- Materials science
- Structured catalysts & interfacial phenomena
- Transport phenomena
- Computational material science & chemistry
- Biosciences

Emphasis on scientific areas where: (i) we want to build capability; (ii) there is significant innovation headroom; (iii) it has impact across multiple applications
Dense Energy Carriers (Solar Fuels)

Efficient Water Splitting

CO\textsubscript{2} Capture from Ambient

Routes to Fuels Synthesis

Hydrocarbons

Low Cost PV

Electrons

Hydrogen

TO END-USER

- Power
- Cooking
- Heating/Cooling

TO END-USER

- Personal mobility
- Heavy transport
- Industrial heat
- Power
- Rail

Artificial Photosynthesis

Highest energy utilization
Lowest production costs
Smallest production footprint
PV Auction Database: PPA prices decline

Source: Official government publications, World Bank, IFC, BNEF, various news sources

Latest 3 bids <30$/MWh
Dense Energy Carrier – recent insights

Solar PV <2 cents/kWh feasible by 2025

Cost of CO₂ direct Air Capture < $150/ton by 2030

Electrolytic hydrogen may be produced at ~ $1/kg by 2035; I.E. cost competitive to H₂ from SMR (With CCS)

But… will we be able to create an End-to-End solution for an affordable, safe and ubiquitous energy carrier that challenges the convenience of liquid hydrocarbons?
Li-ion is ahead in the adoption game and “improved Li-ion” may become leading technology for increasing number of applications.

Technology learning curves make deployment pace a competitive advantage (‘winner takes all’).

Energy storage deployment over time

Source: BNEF, April 2015
Advanced Energy Storage (AES)

Research Directions

- Safety
 - Solid-state systems
 - Reduce short circuits

- Cost
 - Abundant feedstocks

- Cycle Life
 - Stability & fidelity of structures & phases

- Energy Density
 - Metal anodes
 - Multivalent chemistries

- Power Density
 - Supercapacitors
 - New approaches to charge transfer

- Charge Time
 - Minimize side reactions

- Charge Time
 - Minimize side reactions

Global Partners

- Answer fundamental questions about electrochemical energy storage materials and devices
- Focus on phenomena that give insights across a range of chemistries to direct future research & support business decisions
- Collaborative projects executing in US, UK, & NL; internal patent filings also in progress
The Global Market for Chemicals Continues to Grow

LNG regasification capacity
mln tonnes p.a.

Domestic demand for base chemicals
mln tonnes p.a.

Source: Shell Management Day Nov 2015

Source: IHS
Methane to Products (M2P)

- Current markets for methane/natural gas is dominated by its calorific value (energy content)
- Find new routes for monetizing natural gas reserves
 - Bulk chemicals (‘advanced feedstock’)
 - Carbon as construction material (and H₂)
- Assume increased CO₂ taxation, instead of no penalty (for DEC/AES)
 - Ideally products with long life-time (reducing CO₂ penalty)
- Explore new scientific developments within catalysis, materials, physics
- Time-line: decades, but probably shorter
Long Range Research Technology Platform

PROGRAMS
- Dense Energy Carriers
- Advanced Energy Storage
- Methane to Products

ENABLING CAPABILITIES
- Computational Material Science & Chemistry
- Bio-Sciences & Bio-Engineering
- Exploratory Experimentation
The Energy Transition Coming Full Circle in the Near Future
Summary

- Energy systems are becoming ever more decentralised and interconnected.
- Shell aims to become a global leader in cleaner power generation, taking advantage of our global footprint and experience with large-scale power infrastructure.
- Natural gas and energy storage solutions must integrate with renewables to meet customers' new energy needs.
- Our integrated approach explores and expands wind and solar; ways to connect customers with new business energy models; access to energy; and the digitalisation of businesses.
Questions and Answers